Breaking the Cycle of Intergenerational Urban Poverty

Kwame Owusu-Kesse

Harlem Children Zone's 'Cradle to Career' approach for comprehensive social change has many asking, “How do I replicate Harlem Children's Zone in my city?”


This is probably the question we get more often than any other from organizations and service providers, particularly outside of New York City. The success of Harlem Children's Zone (HCZ) in changing lives over the last two decades has created a hunger in other places to bring about HCZ-level transformation. We are extremely humbled by the replication question and are committed to help strengthen the broader field of practice.


It should be noted that when we discuss replication, it is a focus on the core elements of our model and not on creating HCZ franchisees or exact replicas of our operations in Harlem; having the flexibility to account for local context is critically important.

Based on the HCZ philosophy, these are the five elements that need to be present for an organization to effectively reproduce our model:


Building and rebuilding community. There needs to be a comprehensive knowledge of the community being served and the people living in that community, what we call “place-based” work. The groundbreaking revelations of researchers like Raj Chetty have shown us the devastating impact that the neighborhoods where we live have on our life chances.


Working at scale. You need to make sure you are having a meaningful impact by reaching a tipping point, a saturation. When HCZ was created, there wasn’t any real empirical reason why the geographic boundaries were drawn the way they were except that the idea was to reach a critical mass of 10,000 young people. That number represented about 70 to 80 percent of the young people in our geographic area. If you can lay your hands on a majority of the young people, you start to create a cause culture. Your presence begins to have a major influence on the direction of peer groups.


“Wait a minute—Kwame got into college? Well, I know I can get into college too!” Kids do what other kids do. If you’re on the corner selling drugs, kids are going to do that. If you’re on the court playing ball, they’re going to do that. If you're going to college, they're going to do that. It’s about creating a level of momentum to affect the peer group thrust. Because of the society we live in, this can be one of the most difficult aspects to sustain. You have to build up the financial stability and infrastructure to be able to scale up without straining the threads of the whole enterprise.


An integrated set of best practice programs from cradle to career. This part of the strategy is critical, yet one of the hardest for organizations to achieve. It means not just having a high-quality early childhood program over here, nothing for elementary students, and then maybe a middle school program over there. No, it has to be integrated across the longer developmental stages of our young people: from birth through college to career. We have to create a net of services that is so tight, no one is falling through the holes.


Use of data. This is crucial; it’s not enough to love these kids and be mission-aligned. You have to be able to deliver with excellence. And the way you know you’re meeting the mark is with clear goals and measurable outcomes in areas like education, health, and wellness.


A culture of accountability. You must acknowledge that this work is hard. In order to execute, you not only must have talent, but you must hold folks accountable to a level of excellence that the community deserves. At HCZ, we have formal ways of doing this, like year-end and mid-year evaluations. But we also have what we call “walk-around management,” which can mean informally dropping in on folks to see how they’re holding up. This is not a place where you’re sitting behind your desk. We have to hold our staff accountable to do what they say they’re going to do—and they must hold us accountable as leadership to set them up for success.

These five elements serve as the foundation to effective place-based interventions. While the work is complex and comprehensive, it is not impossible. What has driven our success is that unrelenting spirit of possibility within the communities we serve. This is nation-building work, and I am hopeful that as a field, we will collectively achieve our north star of millions of young people on the pathway to social and economic mobility and racial equity—ultimately breaking the cycle of intergenerational poverty.


Photo: Sergio Alexis Perez mural in Harlem, New York, by Shaun Dawson


About the Author:

Kwame Owusu-Kesse
CEO, Harlem Children's Zone

Read perspectives from the ISSP blog

Paper cut-out figures holding hands in a chain against a dark blue background.
By Elizabeth Dinschel, December 18, 2025 December 18, 2025
Elizabeth Dinschel, MA, MBA, is the Executive Director of ISSP Earlier this month, we hosted our first global ISSP Town Hall since I stepped into the role of Executive Director. I logged off that call energized, humbled, and deeply grateful for the honesty, generosity, and care that our members brought into the space. This Town Hall was never meant to be a one-way update. It was designed as a listening session — a chance for ISSP leadership and staff to hear directly from sustainability professionals across regions, sectors, and career stages. And you delivered. What follows are a few reflections on what I heard, what we learned, and where we’re headed next together. Why We Called This Town Hall ISSP has gone through a period of transition — new leadership, new staff, and a renewed focus on modernizing how we serve a truly global membership. Change can be energizing, but it can also create moments of uncertainty and disconnection. We knew we needed to pause, gather our community, and listen with intention. The Town Hall brought together members from multiple continents, industries, and disciplines. Sustainability practitioners, consultants, engineers, communicators, policy professionals, and career-transitioners all showed up with thoughtful questions and candid feedback. One thing was immediately clear: this community cares deeply about its work, about each other, and about ISSP’s role in supporting sustainability professionals at a challenging moment for the field.
Can sustainability be saved by tackling loneliness, not just CO₂ emissions?
By Raz Godelnik, Associate Professor November 20, 2025
Raz Godelnik is an Associate Professor of Strategic Design and Management at Parsons School of Design — The New School. He is the author of Rethinking Corporate Sustainability in the Era of Climate Crisis . You can follow him on LinkedIn .  Can sustainability be saved by tackling loneliness, not just CO₂ emissions? Earlier this month, I stopped at Sunshine Coffee in Laramie, Wyoming, on our way to Yellowstone Park. What brought me there was the fact that it’s a zero-waste coffee shop, with no single-use consumer items. In other words, there are no disposable cups — not for customers dining in, and not even for those who want their coffee to go, like I did. Instead, you can either bring your own reusable cup or get your drink in a glass jar for $1, which is refunded on your next order when you return it (or you can simply keep it, as I did). At first, I was excited about the zero-waste coffee shop concept, wondering what it would take for Starbucks and other coffee chains to adopt it and eliminate the waste that has become an integral part of our coffee (and other drinks) consumption. But as I waited for my coffee, I began to notice something else — something that had little to do with waste and everything to do with people. As I looked around, I noticed their stickers. Beneath the logo, it read: Zero waste. Community space . Suddenly it clicked — this coffee shop isn’t just about eliminating waste; it’s about creating a place where people feel connected. As owner and founder of Sunshine Coffee, Megan Johnson, explained in an interview with This is Laramie : “I wanted to bring sustainable values to Wyoming as well as build a business that serves the community.” That got me thinking about how the second part — serving the community — is integral to the first. After all, in a world where loneliness — a key barrier to people’s well-being — is on the rise, shouldn’t creating spaces for connection be just as central to sustainability as going zero waste?
By Nicole Cacal, MSc, October 30, 2025
Nicole Cacal, MSc, is Executive Director of the TRUE Initiative in Hawaii and serves as Vice President on the Governing Board of ISSP. In our October blog, she challenges the prevailing narrative around AI's environmental impact, arguing that strategic deployment can transform AI from an environmental burden into a driver of recursive sustainability. Drawing on her background in strategic design and technology management, she presents emerging pathways for responsible AI adoption that balance societal benefit against environmental risk. Toward Appropriate and Responsible AI: Pathways to Sustainable Adoption and Infrastructure Nicole Cacal · October 27, 2025 Whenever I give an AI presentation or offer advice on AI adoption, whether to business owners, C-level executives, or sustainability professionals, one concern surfaces time and time again, especially here in Hawaii: the environmental tension. People want to explore AI's potential, but they're acutely aware of the energy consumption, the water usage, the carbon footprint. It's become almost a reflex: mention AI, and someone immediately raises the environmental cost. I get it. The data centers, the training runs, and the resource demands. They're real and they're significant. But here's what I've come to believe: if we shift the narrative from focusing solely on AI's detriment to the environment and instead ask how much good it can create, what role we can play in driving data centers to go greener, and how we can generate recursive sustainability, we unlock better questions. We start thinking forward rather than just defensively. As sustainability professionals, our job isn't to reject technology wholesale. It's to shape its evolution. And right now, we have an opportunity to influence how AI develops and deploys in ways that align with planetary boundaries and social equity. But to do that, we need to move beyond binary thinking. Right-Sizing AI: Why Bigger Isn't Always Better One of the most overlooked levers we have for sustainable AI is also one of the simplest: choosing the right model for the job. The AI industry has been caught in a "bigger is better" arms race for years now. Every new model release touts more parameters, more capabilities, more everything. And sure, these massive general-purpose models are impressive. But they've created a dangerous assumption: that every task requires maximum firepower. This is where my strategic design training from Parsons kicks in. Good design isn't about having the biggest toolkit. It's about matching the tool to the task. It's about elegance through constraint. The same principle applies to AI deployment. The emerging concept of "Small is Sufficient " is gaining traction for good reason. Research shows that selecting smaller, purpose-fit AI models for specific tasks can achieve nearly the same accuracy as their larger counterparts while reducing global energy demand by up to 28% . Twenty-eight percent. That's not marginal; that's transformational. Think about what your organization actually needs. Are you processing customer service inquiries? Analyzing spreadsheet data? Generating product descriptions? Most of these tasks don't require a frontier model. A fine-tuned, task-specific model will do the job with a fraction of the computational overhead. The shift we need is cultural as much as technical. We need to move from asking "what's the most powerful AI we can deploy?" to "what's the most appropriate AI for this specific use case?" That question changes everything, from procurement decisions to vendor relationships, internal training, and infrastructure planning. AI as Infrastructure Manager: The Self-Optimizing Data Center Here's an irony that doesn't get enough attention: AI might be energy-intensive, but it's also one of our best tools for managing energy systems efficiently. When we only think of AI as a consumer of data center resources, we miss part of the story. AI can also be the conductor of efficiency, orchestrating complex systems in real-time to minimize waste and maximize renewable integration. Consider three optimization domains where AI is already making measurable impact: Cooling systems: Data centers generate enormous heat, and cooling accounts for a massive portion of their energy use. AI can continuously adjust cooling based on workload patterns, outside temperature, humidity, and dozens of other variables, optimizing in ways that static systems simply can't match. Workload scheduling: Not all computing tasks need to happen immediately. AI can intelligently schedule batch processing, model training, and background tasks for times when renewable energy is abundant or when grid demand is lowest. This isn't just theory. Companies are already doing this. Renewable energy integration: This one hits close to home in Hawaii, where we're working toward aggressive renewable energy targets but face unique challenges with grid stability and storage. AI-managed facilities can modulate demand in response to solar and wind availability, essentially turning data centers into flexible grid assets rather than inflexible burdens. When organizations approach their operations as integrated systems rather than collections of independent components, they achieve results that surprise even them. AI-orchestrated data centers represent this systems thinking at its most sophisticated. The technology optimizes itself recursively, reducing the footprint of AI through AI. That's the kind of elegant solution we should be scaling. Measuring What Matters: Beyond Energy to Net Benefit But here's the challenge: if we only measure AI's direct energy consumption, we miss the full picture. We need frameworks that capture both the operational cost and the systemic benefit. This is where life cycle assessment combined with comparative modeling becomes essential. We need to ask: compared to what? And over what timeframe? The sectoral success stories are compelling when you run the numbers: Building automation systems powered by AI are consistently achieving energy savings in the range of 20-30% across diverse building types. One documented case study of a commercial office building in the United States showed a 32% reduction in overall energy consumption with a 2.4-year return on investment (a $2.1 million system investment generating $875,000 in annual savings). In Stockholm, the SISAB school building portfolio achieved similar results with a two-year payback period. In precision agriculture, AI-driven irrigation and fertilizer application systems are cutting water consumption by 20% to as much as 50% and reducing chemical runoff, addressing both resource scarcity and ecosystem health. Waste management optimization is another powerful example. AI-powered sorting systems in recycling facilities dramatically improve material recovery rates while reducing contamination. The resource efficiency gains far exceed the AI system's energy footprint. These aren't marginal improvements. When properly deployed, targeted AI applications produce emissions savings and resource efficiencies that dwarf their own operational costs. That being said, given today's fossil fueled data center expansions, we may find that we have much further to go in making the environmental positives outweigh the negatives. But that's no reason to throw in the towel or to assume that these technologies cannot - over time - deliver more environmental benefits than downsides. It requires companies to demand more of their technology providers and deploy their systems sustainably when greener options become available. But (and this is crucial) these benefits only materialize when we pair the right AI with the right infrastructure and the right deployment strategy. Which brings us to governance. The Path Forward: Governance, Transparency, and Adaptive Thinking The sustainability community, including organizations like ISSP, is actively developing shared frameworks for assessing AI's net impact. These emerging approaches include system-level energy auditing, selective task deployment protocols, and strategies for minimizing "dark data" (the vast amounts of stored data that's never used but still requires energy to maintain). Multi-stakeholder governance initiatives are bringing together technologists, policymakers, environmental scientists, and business leaders to create adaptive standards. This isn't about creating rigid regulations that will be obsolete in two years. It's about establishing principles and processes that evolve with the technology. Those with a technology management background know that the most successful systems are those designed for adaptation. We need governance structures that can respond to new information, course-correct quickly, and remain grounded in measurable outcomes. Transparency is non-negotiable. Organizations deploying AI need to measure and report not just their energy consumption but their net impact. What problems are you solving? What resources are you saving? What would the alternative approach have cost? These aren't easy questions, but they're the right ones. As sustainability professionals, this is our arena. We have the frameworks: life cycle thinking, systems analysis, stakeholder engagement, and metrics development, to name a few. We need to apply these tools to AI with the same rigor we've applied to supply chains, built environments, and industrial processes. So here's my invitation: What are you seeing in your sector? How is your organization approaching the AI sustainability question? Are you finding innovative ways to ensure deployment is appropriate and responsible? Because ultimately, appropriate AI isn't about choosing between progress and sustainability. It's about insisting that progress is sustainable. It's about right-sizing models, optimizing infrastructure, measuring net benefit, and building governance systems worthy of the challenge. The technology itself is neutral. Our choices determine whether AI becomes a driver of sustainability or another extractive burden. Let's choose wisely.
More blog posts